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Abstrac t  

We compute the flux of the stress-energy tensor across a tube surrounding the world line 
of a charged particle. By slight modifications of the definition of the Coulomb energy- 
momentum, the resulting expression contains the radiation reaction term (proportional to 
the square of the four-acceleration) but  not  the Schott term (proportional to the deriva- 
tive of the acceleration). The equation of motion for the particle derived from this expression 
implies a variable rest mass. 

l .  In troduct ion  

The p r o b l e m  of  t he  relat ivist ic  e q u a t i o n  o f  m o t i o n  of  a classical charged 
part ic le  has  b e e n  w i t h  us n o w  for  a long t ime,  and  it  is a m a t t e r  o f  taste  to  
decide w h e t h e r  a sa t i s fac tory  so lu t i on  has  been  f o u n d  or no t .  

We res t r ic t  ourselves here  to  a single charged  par t ic le  subjec t  to  an  unspec i f ied  

force,  w i t h  n o  i n c o m i n g  r ad ia t ion  field. 
The  m o s t  e legant  so lu t ion  has  b e e n  deve loped  in the  w o r k  o f  Dirac ( 1 9 3 8 )  

and  R o h r l i c h  ( 1965 ) ,  w h o  cons ider  a p o i n t  part icle .  The  resul t  is the  L o r e n t z -  

Dirac  e q u a t i o n  (see f o o t n o t e  i )  

m w  u _ (e2 /6rr)(fvu + w2u~)  = F u (1 .1)  

I We choose a somewhat different notation from that used by Rohrlich (1965). We use 
a time-favoring metric g ~  (this changes the sign of the scalar products when compared 
to those in the above-mentioned book) and natural units such that c = 1 and e o = 1 
(which introduces some factors of 4~r), The world line is specified in terms of the 
proper time by ~/~(r), and u~z is the four-velocity d~la/dr (not the normal to the world 
line, called here b~). We do not use v/a to avoid confusion between u = dUdr and 
v = dti/dt. For the same reason, the four-acceleration duta/dr is designated by w# instead 
of a#. Derivatives with respect to r are indicated by a dot, and we use the modified 
summation convention, atabl~ = sob o - a • b, for repeated lower Greek indices. 
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Its "derivation" is based on energy-momentum balance and involves both the 
retarded and advanced fields from the charge, although this is not necessarily 
so (Teitelboim, 1970a, b; 1971a, b; Teitelboim and L6pez, 1971). A review of 
the theory of the classical electron is also given by Rohrlich (1973). 

Crucial to these considerations is the computation of the flux of the stress- 
energy tensor through a tube around a portion of the world line, which in 
addition to the change in the Coulomb energy-momentum supplies a term 
proportional to the Abraham vector 

r u = (e2/6rr)(~u + wZuu) (1.2) 

The name radiation reaction for the above term, or for the first part only, is a 
misnomer. The determination of the radiation rate 

~t = --(e2 /6rr)w 2 (1.3) 

shows that this name is proper for'the second one. The term with the deriva- 
tive of the acceleration, called Schott term, is more appropriately related to 
the fields near the world line (Teitelboim, 1970a). This term, rightly called 
troublesome, changes radically the nature of the equation of motion when 
compared to that of a neutral particle. It is no longer sufficient to specify 
the initial position and velocity of the particle, but also the acceleration (or 
an asymptotic condition) are required to determine the motion of the particle, 
leading to effects such as preacceteration (Rohrlich, 1965). Although they 
are unobservable in practice, they are difficult to accept in this context. 

There is also considerable confusion about the computation of the flux of 
the stress-energy tensor across the tube surrounding the world line. We show 
that no reference to wu need appear, which results in a modified equation of 
motion where the Schott term is absent (Bonnor, 1974; Rowe, 1974). As is 
often the case in computations involving infinite quantities, slight changes in 
the definitions lead to significant modifications of the results. The change in 
the equation of motion brings with it the undesirable choice between a variable 
mass and a nonelectromagnetic force. The first alternative appears preferable 
to us, although it contradicts our experience; the solution of this difficulty 
would then lie in the quantization of the theory. 

This leads us back to the frequently asked question: Why bother with a 
classical electron theory if it is known that quantum effects are important? 
We find that not only is it esthetically pleasing to remove a difficulty in an 
otherwise elegant theory, but that such a theory would be of considerable 
help in the formulation of quantum electrodynamics in the context of relativ- 
istic quantum mechanics (as opposed to the theory of quantized fields). In 
nonrelativistic quantum mechanics, the Coulomb interaction in the Hamiltonian 
represents the interaction between two charged point particles, not the energy 
of two charge distributions proportional to the probability densities; we are 
interested in a relativistic generalization of this Coulomb term. 

We present our computations in considerable detail only to emphasize the 
exact nature of certain results which are often considered approximations. Our 
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principal concern is the proper interpretation of  the different terms; ours 
differs from that of other authors. 

We introduce a somewhat different definition of the energy and momentum 
of the Coulomb field in Section 2, and we present a detailed computat ion of 
the flux of  the stress-energy tensor across the tube surrounding the world line 
in Section 3. The next  section contains a discussion of possible equations of  
motion, and we conclude with some remarks in Section 5. 

2. Energy and Momentum Associated with the Velocity FieMs 

The basic assumption that we make is that Maxwell's equations are valid for 
the field produced by point particles. We use a Lorentz gauge, and the Li6nard- 
Wiechert potentials are 

e ~[r~(x)]  
Au(x) = 4~ Re(x)ua [rR (x)] (2.1) 

where 
Ru(x) = xu - ~u [rR (x)] (2.2) 

and the retarded proper time is determined by 

R 2 = 0, R o > 0 (2.3) 

that is, ~(rR) is on the backward light cone from x. In the usual manner we 
determine the fields 

(R .) 3 - [  . u )  3 

and the symmetrized stress-energy tensor 

e 2 I [ ( 1 - R .  w) 2 + w ; ( R .  U.)~]RuRv 
0 ~  = -  ~ (R. u) 6 

\ 

(1 - R " w)(uuR v + uvR~) w~Rv + wvR u guy 1 
. . . . . . . . . . .  (R" u) 5 . . . . . . . . .  (R" u) 4 + 2(R- u)4j  (2.5) 

The first term in (2.4) is the velocity field and decreases like 1/p 2 for Iarge p, 
while the other term is the acceleration or radiation field proportional to l/p, 
where 

p = R -  u (2.6) 

The source of the field is the singular charge-current density, 

jr(x)  = e f dr 6 [x - ~(r)] uu(r ) (2.7) 

The bound or Coulomb energy is usually obtained in the rest frame of a 
particle, and it diverges unless the computat ion excludes a (small) region a 
distance e from the charge. We recall that  the elementary definition of  the 
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potential energy of charged particles excludes this self-energy, which appears 
when an expression found for continuous charge distributions (where the self- 
energy is negligible) is applied to point particles. 

This definition is less appropriate when the particle is accelerated, or when 
we are dealing with several particles in motion with respect to each other. The 
choice of the rest frame becomes rather arbitrary. A consideration of particle 
decay or pair creation also shows this definition to be in conflict with the ideas 
of propagation of the fields with a speed not larger than 1. 

Instead, we define the bound energy-momentum in terms of the flux of the 
stress-energy tensor across the light cone with origin at the particle, excluding 
again a region of size e. That is, 

1". C = f o . .  do. (2.8) 
£ 

where ®~,, is given by (2.5) and ~ is shown in Figure 1. The surface element is 
obtained from the general expression 

da~z = +- e#vxpOxz,/aO i ) (ax~ . /ao2) (axp /~03)  dO 1 dO 2 dO 3 (2.9) 

\ ! 

"x / 

! 
/ 

Figure 1-Diagram showing the surface Z on the light cone, used to compute the Coulomb 
energy-momentum, and the surface Z' of the tube around the world line. The surface 2;", 
when removed to infinity, is used to compute the radiated energy-momentum. 
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where 01, 02, 03 are arbitrary parameters and euvxo is the antisymmetric tensor 
with 

%123 = +1 (2.t0) 

which is valid even for lightlike surfaces (Schild, 1960; Marx, 1975). It  is un- 
necessary to make any reference to the "2-content" of the surface element 
(Synge, 1956). 

The equation of the light-cone with its vertex at ~(r) is 

x ( p , o , ~ ) = ~ + p [ u  + b(0, ~)1 (2.11) 

where 0 and ~0 are the spherical coordinates of the unit vector b in the rest 
frame at r. 

The relations 

u. b = 0 (2.12) 

b 2 = - 1  (2.13) 

imply that ab/~O and ab/~o are normal to u and b, and it is easy to see that 
they are also normal to each other. Thus, we complete an orthonormat tetrad 
with unit vector b' and b" parallel to ab/aO and ab/~o, respectively. Then 

and 

where 

bxv/bp = Uv + by 

ax~,/ao = p x / [ - ( a b / a o  ) = ] b'~ 

a~o/a~, = p ~/[-(ab/a~o) =1 b; 

do.  = p2(u. + b . )  d a  clp 

a a  = . , /[(ab/ao)2ob/a~,) = ] dO d~o 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

is the dement of solid angle. Since 

R u = p(u u + bu) (2.19) 

u- w = 0 (2.20) 

we find that 

®tar dou = (e2 /32rr2 p2)(uu + b u) do dg2 (2.21) 

Thus, there is no contribution from the acceleration fields; this is an exact 
result, not an approximation. We integrate over the solid angle and over P from 
e to infinity; we get no contribution from b u, and the final result is 

Pu c (r) = @2/8rre)uu(r ) (2.22) 
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Precisely the same result is obtained if we compute the Coulomb energy of a 
charged particle (outside a sphere of radius e) in its rest frame, that is, over 
the spacelike hyperplane perpendicular to its four-velocity. But here we have 
added the total energy as measured by the information collecting spherical 
surface that moves out from the particle with the speed of light. Since the 
light-cone is a well-defined geometrical entity in Minkowski space, this quantity 
is independent of the choice of reference frame and can be included in the mass 
of the particle by the renormalization procedure. 

3. Stress-Energy Flux Across a Tube Near the Worm Line 

We now consider a tube around the world line between the light-cones at 
~(r I) and ~(r2). The "radius" of the tube is the small distance e, but it is mea- 
sured along the light-cones instead of the normal b. The equation of this surface, 
shown in Figure 1, is 

x(r, 0, ¢) = ~(r) + e [u(r) + b(r, 0, ~)] (3.1) 

where r goes from rx to %, and 0 and ¢ are defined as in Section 2. 
A straightforward application of the divergence theorem, generalized to 

the four-dimensional spacetime with the Lorentz metric, shows that the flux 
of the stress-energy tensor across the tube has to be equal to the change in the 
Coulomb energy as defined above, plus the flux across the surface at infinity, 
the radiated energy-momentum (Rohrlich, 1965) 

T 2 

puR(r l ,  r2) = -(e2/6rr) f wauu dr (3.2) 
T1 

since the divergence of ®uv vanishes throughout the enclosed volume. There is 
no contribution from f%, so there is no need to decide whether the Schott 
term is related to the radiation or to the bound fields. 

We verify this result by carrying out the explicit calculation in a manner 
similar to that in Section 2 in order to highlight possible differences with the 
usual expressions. The surface element is determined by 

~x~/ar = u~ + e(w~ + by), 

ax~/~o = ~x /[ -Ob/aO)  ~1 b'x, 
tt 

~x o/a,p = e , , / [ - (Ob/~o)  2 ] b o 

and we use the general expansion 

Yv =Y" u u v -  y"  bbv - y"  b'b'u - y"  b"b'~ 

to express 

b v = - b .  w u  v - b " b ' b ' v  - b "  b " b ~ ,  

w v = - b "  wb v - b "  w b ' v -  b"" wb~ 

(3.3) 
(3.4) 
(3.5) 

(3.6) 

(3.7) 
(3.8) 
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We find 

da u = e2[(1 - eb. w)b u - eb. wuu] d~2 d'r (3.9) 

which has a component  along u due to the fact that b is the normal to the 
world line at the vertex of  the cone, not  the normal to the surface in this case. 
We use (2.5), (2.6), (2.18), (2.19), (2.20), and (3.9) to derive 

®uv day = (e2/16rr~e2){[(1 - eb . w) z 

+ e2w ~1 (u, + bu) - (1 - eb.  w)[(1 + eb. w)u u 

+ eb. wbu] + e[(1 - eb. w)b. w(u u + bu) 

+ (1 - 2eb. w)w u] - ½[(1 - eb. w)b u 

- eb. wuu]} (3.10) 

To perform the angular integrations, we need the relation 

f bub v da  = -~n(guv - uuuv) (3.11) 

while a similar expression with three factors of  b vanishes. The result is 

T 2 

four) day = (e2/47re) f dr(-½w u + ~ew2uu) (3.12) 
1~ ' 7" 1 

which can be rewritten as 

- f ®uvdciv=PuC('r2)-PuC(ra)+PuR('rl, r2) (3.13) 
Z' 

Equation (3.12) is an exact expression, not an approximation for small e. 
The reason the term in wu is absent is that the fields on the tube are referred 
to the proper time at the vertex of the light-cone instead of  that corresponding 
to the same coordinate time in the instantaneous rest frame. Since the field 
originates at the retarded time, the former approach is more consistent, and it 
agrees with our definition of  the self-energy. It is also true that the distance 
from the world line is measured differently and the surfaces are not  exactly 
the same, but the flux should be the same. 

The same procedure is used by Rowe (t974),  where the difference between 
his and Dirac's result is attributed to changes in the end of  the tube. This is to 
some extent a matter o f  interpretation. 

Furthermore, equation (3.12) is also derived in a paper by Hogan (1973), 
which was followed by a recantation (see footnote 2). He uses it to derive the 
usual Lorentz-Dirac equation. 

2 Hogan (1974). The surface at infinity does not  appear to matter to the argument in 
the paper (Hogan, 1973). We note that we obtain the correct radiation rate if we let 
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x 

Figure 2-Selection of the normal to a dosed surface in Minkowski space to apply the 
generalization of the divergence theorem f®#v, v d4x = ~®l.m dov. 

The application of the divergence theorem in Minkowski space requires 
special care. As shown in Figure 2, we can take them pointing outward for 
timelike normals, inward for spacelike ones and along the appropriate tangent 
for lightlike "normals." 

4. The Equat ion o f  Mot ion  

If we apply equation (3.12) to an infinitesimal interval dr, it gives us the 
rate at which electromagnetic energy-momentum is lost by the particle. The 
Coulomb part is incorporated in the rate of change of the mechanical energy- 
momentum Pu, and we obtain the equation of motion 

dpu/d.r - (e2161r)w2uu = F u (4.1) 

instead of the Lorentz-Dirac equation (1.1). 
If the force is of electromagnetic origin, it has the form 

and it satisfies 

e .  = -ee. uv (4.2) 

Fuu u =- 0 (4.3) 

This implies that contraction of the left-hand side of equations (1 .I) and (4.1) 
with u u has to give a zero result. This is the case with the Lorentz-Dirac equa- 
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tion when the derivative of equation (2.18) is used to show that 

Puuu -- 0 (4.4) 

In other words, the four equations (one for each value of/1) are not inde- 
pendent, a reflection of the three degrees of freedom of a free point particle, 
irrespective of speed. The equation for/ l  = 0 normally expresses the conserva- 
tion of energy, especially if, for the Lorentz-Dirac equation, the Schott term 
is included (Teitdboim, 1970a) in 

Pu = muu  - (e2 /6rr)wu (4.5) 

We have no Schott term in our derivation of equation (4.1), and we are very 
reluctant to introduce it arbitrarily at this stage. It is also hard to justify giving 
up equation (4.3) by the required introduction of a nonelectromagnetic force 
that would have to feed the radiated energy to the particle. Thus, if we insist 
on keeping the definition 

Pu = muu (4.6) 

we are forced to conclude that the rest mass m is not a constant. Instead, 
equation (4.1) leads to the relationship 

/n = (e 2 / 6 a ) w  2 (4.7) 

that is, the mass itself feeds the radiation energy. We note that the four- 
acceleration is a spacelike vector, and that w 2 is always negative for an acceler- 
ated particle. 

The Lorentz-Dirac equation with an incident radiation field is invariant 
under time reversal (Rohrlich, 1965). The modified equation (4.1) is not; in 
particular, m is a decreasing function of time, and the time-reversed solution 
would correspond to an increasing mass. It is not clear, though, what the 
physical importance of time reversal invariance is. Even when equations are 
invariant, solutions need not be due to the boundary conditions. If a retarded 
interaction between charged particles is postulated, the invariance is also lost. 
In scattering of a classical electromagnetic field by a macroscopic object, the 
solution reduces to outgoing spherical waves; although the time-reversed 
solution can be written down and satisfies Maxwelt's equations, it would be 
practically impossible to produce such an incoming spherical wave in the 
laboratory. Similar arguments apply to wave packets in quantum mechanics. 

The situation might be different where strong time reflection is concerned, 
that is, when particles and antiparticles are interchanged, too. Antiparticles 
can be considered to be propagating backwards in time and they might radiate 
in a time-reversed pattern. 

There is no evidence that the mass of a particle changes due to radiation, 
but this disagreement with experiments might disappear when the theory is 
quantized. This would be similar to the lack of radiation from the hydrogen 
atom, which was only explained by the quantum theory. Furthermore, it is 
far from established that a single charged particle radiates and whether a mass 
can be defined for a particle interacting with others. 
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The variable mass is a disturbing feature of this equation, but not more so 
than asymptotic conditions, nonlocal interactions, and preacceleration. 

Substituting equation (4.7) back into (4.1), it reduces to 

mw u = F# (4.8) 

which is the usual equation of motion without radiation reaction when m is 
constant. But here it is supplemented by equation (4.7), which in fact repre- 
sents a new degree of freedom for the classical charged particle. 

5. Concluding Remarks 

We have shown that the balance of energy and momentum for a charged 
particle does not necessarily lead to the Lorentz-Dirac equation, but that a 
minor modification of the usual argument leads to the elimination of the 
Schott term. The Coulomb energy-momentum was defined by integration 
over the light cone instead of a spacelike hyperplane. Only the retarded fields 
were used, because they are closer to our intuition, and the advanced fields 
are not crucial to the argument. 

We used a Lorentz gauge and the Li6nard-Wiechert potentials, although 
there are indications that the Coulomb or radiation gauge is more physically 
significant (Marx, 1970). But in the Lorentz gauge, both the potentials and the 
fields depend only on one point on the world line, and the fields are gauge 
invariant. 

If we eliminate the Schott term from the equation of motion, we are lead 
to the assumption of a variable rest mass for the particle. The decrease of the 
mass would account for the emitted radiation. This would probably be an 
effect that would disappear in a quantized form of the theory. If the world 
line is allowed to turn back in time, the mass could also increase. 

The nature of the force was not discussed in this paper, beyond the sug- 
gestion that it can be electromagnetic in nature. In extending this approach to 
several charged particles, the natural choice would be the retarded electro- 
magnetic interaction. The variable mass would avoid the objectionable result 
of the head-on collision of two equal particles, which radiate at the same time 
they gain kinetic energy if the radiation reaction term is ignored (Huschilt, 
et al., 1973). 

Another puzzling consequence of the Lorentz-Dirac equation is no longer 
true for the new approach which is the vanishing of the Abraham vector for 
uniformly accelerated motion, as a result of which the motion of a neutral 
particle would be the same as that of  a charged particle, in spite of the radiation 
emitted by the latter. 

It is necessary to explore further the effects of the elimination of the Schott 
term to decide which equation is better, although the results are certain to be 
modified by quantum mechanics in either case. Actually, the possible use in a 
quantized theory may be considered the final test on the validity of such an 
equation. 
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